Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be3Å.
Molar volume is the volume occupied by 1 mol of any (ideal) gas at standard temperature and pressure (STP: 1 atmospheric pressure, 0 °C). Show that it is 22.4 litres.
Figure 13.8 shows plot of PV/T versus Pfor 1.00×10–3 kg of oxygen gas at two different temperatures. What does the dotted plot signify? Which is true: T1 > T2 or T1 < T2? What is the value of PV/T where the curves meet on the y-axis? If we obtained similar plots for 1.00 ×10–3 kg of hydrogen, would we get the same value ofPV/Tatthepointwherethecurvesmeetonthey-axis?Ifnot,whatmassofhydrogen yields the same value of PV/T (for low pressure high temperature region of the plot)? (Molecular mass of H2 = 2.02 u, of O2 = 32.0 u, R = 8.31 J mo1–1 K–1.)
An oxygen cylinder of volume 30 litres has an initial gauge pressure of 15 atm and a temperature of 27 °C. After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm and its temperature drops to 17 °C. Estimate the mass of oxygen taken out of the cylinder (R = 8.31 J mol–1 K–1, molecular mass of O2 = 32 u).
An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12 °C. To what volume does it grow when it reaches the surface, which is at a temperature of 35°C?
Estimate the total number of air molecules (inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity 25.0 m3 at a temperature of 27 °C and 1 atm pressure.
Estimate the average thermal energy of a helium atom at (i) room temperature (27 °C), (ii) the temperature on the surface of the Sun (6000 K), (iii) the temperature of 10 million Kelvin (the typical core temperature in the case of a star).
Three vessels of equal capacity have gases at the same temperature and pressure. The first vessel contains neon (monatomic), the second contains chlorine (diatomic), and the third contains uranium hexafluoride (polyatomic). Do the vessels contain equal number of respective molecules? Is the root mean square speed of molecules the same in the three cases? If not, in which case is vrms the largest?
Atwhattemperatureistherootmeansquarespeedofanatominanargongascylinder equaltothermsspeedofaheliumgasatomat–20°C?(atomicmassofAr=39.9u,of He = 4.0u).
Estimate the mean free path and collision frequency of a nitrogen molecule in a cylinder containing nitrogen at 2.0 atm and temperature 17 °C. Take the radius of a nitrogen molecule to be roughly 1.0 Å. Compare the collision time with the time the molecule moves freely between two successive collisions (Molecular mass of N2 = 28.0 u).
A metre long narrow bore held horizontally (and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom?
From a certain apparatus, the diffusion rate of hydrogen has an average value of 28.7 cm3 s–1. The diffusion of another gas under the same conditions is measured to have an average rate of 7.2 cm3 s–1. Identify thegas. [Hint: Use Graham’s law of diffusion: R1/R2 = (M2/M1)1/2, where R1, R2 are diffusion rates of gases 1 and 2, and M1 and M2 their respective molecular masses. The law is a simple consequence of kinetic theory.]
A gas in equilibrium has uniform density and pressure throughout its volume. This is strictly true only if there are no external influences. A gas column under gravity, for example, does not have uniform density (and pressure). As you might expect, its density decreases with height. The precise dependence is given by the so-called law of atmospheres n2 = n1 exp [-mg (h2 – h1)/ kBT] Where n2, n1 refer to number density at heights h2 and h1 respectively. Use this relation to derive the equation for sedimentation equilibrium of a suspension in a liquid column: n2 = n1 exp [-mg NA(? - P') (h2 –h1)/ (?RT)] Where ? is the density of the suspended particle, and ?’ that of surrounding medium. [NA is Avogadro’s number, and R the universal gas constant.] [Hint: Use Archimedes principle to find the apparent weight of the suspendedparticle.]
Givenbelowaredensitiesofsomesolidsandliquids.Giveroughestimatesofthesizeof theiratoms: Substance Atomic Mass (u) Density (103 Kg m-3) Carbon (diamond) 12.01 2.22 Gold 197.00 19.32 Nitrogen (liquid) 14.01 1.00 Lithium 6.94 0.53 Fluorine (liquid) 19.00 1.14 [Hint: Assume the atoms to be ‘tightly packed’ in a solid or liquid phase, and use the knownvalueofAvogadro’snumber.Youshould,however,nottaketheactualnumbers you obtain for various atomic sizes too literally. Because of the crudeness of the tight packingapproximation,theresultsonlyindicatethatatomicsizesareintherangeofa fewÅ].
Units And Measurements
Motion in a straight Line
Motion in a Plane
Law of Motion
Work, Energy and Power
System of Particles and Rotational Motion
Gravitation
Mechanical Properties of Solids
Mechanical Properties of Fluids
Thermal Properties of Matter
Thermodynamics
Kinetic Theory
Oscillations
Waves
Some Basic Concepts Of Chemistry
Structure Of Atom
Classification Of Elements & Periodicity
Chemical Bonding
States Of Matter
Equilibrium
Redox Reactions
Hydrogen
The S-block Elements
The P-block Elements
Organic Chemistry Some Basic Principles
Hydrocarbons
Environmental-Chemistry
Sets
Relations & Functions
Trigonometric Functions
Principle Of Mathematical Induction
Complex Numbers & Quadratic Equations
Linear Inequalities
Permutations & Combinations
Binomial Theorem
Sequences & Series
Straight Lines
Conic Sections
3D Geometry
Electric Charges & Fields
Electrostatic Potential & Capacitance
Current Electricity
Magnetism & Matter
Electromagnetic Induction
Alternating Current
Electromagnetic Waves
Ray Optics & Optical Instruments
Wave Optics
Dual Nature Of Radiation & Matter
Atoms
Nuclei
Semiconductor Electronics Materials
Communication Systems
Solid State
Solutions
Electrochemistry
Chemical Kinetics
Surface Chemistry
General Principle and Process
The pblock elements
The d & f block elements
Coordination Compounds
Haloalkanes & haloarenes
Alcohols Phenols & Ethers
Aldehydes Ketones & Carboxylic Acids
Amines
Biomolecules
Polymers
Chemistry In Everyday Life
Inverse Trignometric Functions
Matrices
Determinants
Continuity & Differentiability
Application of Derivatives
Integrals
Applications Of Integrals
Differential Equations
Vector Algebra
Linear Programing
Probability