Exercise 12.1 A point is on the x-axis. What are its y-coordinates and z-coordinates?
A point is in the XZ-plane. What can you say about its y-coordinate?
Name the octants in which the following points lie: (1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5), (–3, –1, 6), (2, –4, –7)
Fill in the blanks:
Exercise 12.2 Find the distance between the following pairs of points: (i) (2, 3, 5) and (4, 3, 1) (ii) (–3, 7, 2) and (2, 4, –1) (iii) (–1, 3, –4) and (1, –3, 4) (iv) (2, –1, 3) and (–2, 1, 3)
Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
Verify the following: (I) (0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isoscelestriangle. (II) (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angledtriangle. (III) (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of aparallelogram.
Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.
Exercise 12.3 Find the coordinates of the point which divides the line segment joining the points (–2, 3, 5) and (1, –4, 6) in the ratio (i) 2:3 internally, (ii) 2:3 externally.
Given that P (3, 2, –4), Q (5, 4, –6) and R (9, 8, –10) are collinear. Find the ratio in which Q divides PR.
Find the ratio in which the YZ-plane divides the line segment formed by joining the points (–2, 4, 7) and (3, –5, 8).
Using section formula, show that the points A (2, –3, 4), B (–1, 2,1)andare collinear.
Find the coordinates of the points which trisect the line segment joining the points P (4, 2, –6) and Q (10, –16, 6).
NCERT Miscellaneous Solutions Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) andC (–1, 1, 2). Find the coordinates of the fourth vertex.
Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Find the coordinates of a point on y-axis which are at a distance of from the pointP (3, –2,5).
A point R with x-coordinate 4 lies on the line segment joining the pointsP (2, –3, 4) and Q (8, 0, 10). Find the coordinates of the point R. [Hint suppose R divides PQ in the ratio k: 1. The coordinates of the point R are given by
If A and B be the points (3, 4, 5) and (–1, 3, –7), respectively, find the equation of the set of points P such that PA2 + PB2 = k2, where k is a constant.
Units And Measurements
Motion in a straight Line
Motion in a Plane
Law of Motion
Work, Energy and Power
System of Particles and Rotational Motion
Gravitation
Mechanical Properties of Solids
Mechanical Properties of Fluids
Thermal Properties of Matter
Thermodynamics
Kinetic Theory
Oscillations
Waves
Some Basic Concepts Of Chemistry
Structure Of Atom
Classification Of Elements & Periodicity
Chemical Bonding
States Of Matter
Equilibrium
Redox Reactions
Hydrogen
The S-block Elements
The P-block Elements
Organic Chemistry Some Basic Principles
Hydrocarbons
Environmental-Chemistry
Sets
Relations & Functions
Trigonometric Functions
Principle Of Mathematical Induction
Complex Numbers & Quadratic Equations
Linear Inequalities
Permutations & Combinations
Binomial Theorem
Sequences & Series
Straight Lines
Conic Sections
3D Geometry
Electric Charges & Fields
Electrostatic Potential & Capacitance
Current Electricity
Magnetism & Matter
Electromagnetic Induction
Alternating Current
Electromagnetic Waves
Ray Optics & Optical Instruments
Wave Optics
Dual Nature Of Radiation & Matter
Atoms
Nuclei
Semiconductor Electronics Materials
Communication Systems
Solid State
Solutions
Electrochemistry
Chemical Kinetics
Surface Chemistry
General Principle and Process
The pblock elements
The d & f block elements
Coordination Compounds
Haloalkanes & haloarenes
Alcohols Phenols & Ethers
Aldehydes Ketones & Carboxylic Acids
Amines
Biomolecules
Polymers
Chemistry In Everyday Life
Inverse Trignometric Functions
Matrices
Determinants
Continuity & Differentiability
Application of Derivatives
Integrals
Applications Of Integrals
Differential Equations
Vector Algebra
Linear Programing
Probability