Calculate the mass percentage of benzene (C6H6) and carbon tetrachloride (CCl4) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.
Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.
Calculate the molarity of each of the following solutions: (a) 30 g of Co(NO3)2. 6H2O in4.3 L of solution (b) 30 mL of 0.5 M H2SO4 diluted to 500 mL.
Calculate the mass of urea (NH2CONH2) required in making 2.5 kg of 0.25 molal aqueous solution.
Calculate (a) molality (b) molarity and (c) mole fraction of KI if the density of 20% (mass/mass) aqueous KI is 1.202 g mL-1.
H2S, a toxic gas with rotten egg like smell, is used for the qualitative analysis. If the solubility of H2S in water at STP is 0.195 m, calculate Henry’s law constant.
A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solution by mass. Calculate the mass percentage of the resulting solution.
The vapour pressure of pure liquids A and B are 450 and 700 mm Hg respectively, at 350 K. Find out the composition of the liquid mixture if total vapour pressure is 600 mm Hg. Also find the composition of the vapourphase.
Vapour pressure of pure water at 298 K is 23.8 mm Hg. 50 g of urea (NH2CONH2) is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and its relative lowering.
Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose is to be added to 500 g of water such that it boils at 100°C. Molal elevation constant for water is 0.52 K kg mol-1.
Calculatethemassofascorbicacid(VitaminC,C6H8O6)tobedissolvedin 75 g of acetic acid to lower its melting point by 1.5°C. Kf= 3.9 K kgmol-1.
Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving1.0 g of polymer of molar mass 185,000 in 450 mL of water at 37°C.
The partial pressure of ethane over a solution containing 6.56 × 10-3 g of ethane is 1 bar. If the solution contains 5.00 × 10-2 g of ethane, then what shall be the partial pressure of the gas?
What is meant by positive and negative deviations from Raoult's law and how is the sign of ?solH related to positive and negative deviations from Raoult's law?
An aqueous solution of 2% non-volatile solute exerts a pressure of 1.004 bar at the normal boiling point of the solvent. What is the molar mass of the solute?
Heptane and octane form an ideal solution. At 373 K, the vapour pressures of the two liquid components are 105.2 kPa and 46.8 kPa respectively. What will be the vapour pressure of a mixture of 26.0 g of heptane and 35 g of octane?
The vapour pressure of water is 12.3 kPa at 300 K. Calculate vapour pressure of 1 molal solution of a non-volatile solute in it.
Calculate the mass of a non-volatile solute (molar mass 40 g mol-1) which should be dissolved in 114 g octane to reduce its vapour pressure to 80%.
A solution containing 30 g of non-volatile solute exactly in 90 g of water has a vapour pressure of 2.8 kPa at 298 K. Further, 18 g of water is then added to the solution and the new vapour pressure becomes 2.9 kPa at 298 K.Calculate: (I) molar mass of thesolute (II) vapour pressure of water at 298K.
A 5% solution (by mass) of cane sugar in water has freezing point of 271 K. Calculate the freezing point of 5% glucose in water if freezing point of pure water is 273.15 K.
Two elements A and B form compounds having formula AB2 and AB4. When dissolved in 20 g of benzene (C6H6), 1 g of AB2 lowers the freezing point by 2.3 Kwhereas 1.0 g of AB4 lowers it by 1.3 K. The molar depression constant for benzene is 5.1 Kkg mol-1. Calculate atomic masses of A and B.
At 300 K, 36 g of glucose present in a litre of its solution has an osmotic pressure of 4.98 bar. If the osmotic pressure of the solution is 1.52 bars at the same temperature, what would be its concentration?
Suggest the most important type of intermolecular attractive interaction in the following pairs. (I) n-hexane andn-octane (II) I2 andCCl4 (III) NaClO4 andwater (IV) methanol andacetone (V) acetonitrile (CH3CN) and acetone(C3H6O).
Based on solute-solvent interactions, arrange the following in order of increasing solubility in n-octane and explain. Cyclohexane, KCl, CH3OH, CH3CN.
Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water? (i) phenol (ii) toluene (iii) formic acid (iv) ethylene glycol (v) chloroform (vi) pentanol.
If the density of some lake water is 1.25 g mL-1 and contains 92 g of Na+ ions per kg of water, calculate the molality of Na+ ions in the lake.
If the solubility product of CuS is 6 × 10-16, calculate the maximum molarity of CuS in aqueous solution.
Calculate the mass percentage of aspirin (C9H8O4) in acetonitrile (CH3CN) when 6.5 g of C9H8O4 is dissolved in 450 g of CH3CN.
Nalorphene (C19H21NO3), similar to morphine, is used to combat withdrawal symptoms in narcotic users. Dose of nalorphene generally given is 1.5 mg. Calculate the mass of 1.5 × 10-3m aqueous solution required for the above dose.
Calculate the amount of benzoic acid (C6H5COOH) required for preparing 250 mL of 0.15 M solution in methanol.
The depression in freezing point of water observed for the same amount of acetic acid, trichloroacetic acid and trifluoroacetic acid increases in the order given above. Explain briefly.
Calculate the depression in the freezing point of water when 10 g of CH3CH2CHClCOOH is added to 250 g of water. Ka= 1.4 × 10-3, Kf= 1.86K kg mol-1.
19.5 g of CH2FCOOH is dissolved in 500 g of water. The depression in the freezing point of water observed is 1.0°C. Calculate the van’t Hoff factor and dissociation constant of fluoroacetic acid.
Vapour pressure of water at 293 Kis 17.535 mm Hg. Calculate the vapour pressure of water at 293 Kwhen 25 g of glucose is dissolved in 450 g of water.
Henry’s law constant for the molality of methane in benzene at 298 Kis 4.27 × 105 mm Hg. Calculate the solubility of methane in benzene at 298 Kunder 760 mm Hg.
100 g of liquid A (molar mass 140 g mol-1) was dissolved in 1000 g of liquid B (molar mass 180 g mol-1). The vapour pressure of pure liquid B was found to be 500 torr. Calculate the vapour pressure of pure liquid A and its vapour pressure in the solution if the total vapour pressure of the solution is 475 Torr.
Vapour pressure of pure acetone and chloroform at 328 K are 741.8 mm Hg and 632.8 mm Hg respectively. Assuming that they form ideal solution over the entire range of composition, plot ptotal’ pchloroform’ and pacetone as a function of xacetone. The experimental data observed for different compositions of mixture is. 100 ×xacetone 0 11.8 23.4 36.0 50.8 58.2 64.5 72.1 pacetone /mm Hg 0 54.9 110.1 202.4 322.7 405.9 454.1 521.1 pchloroform/mm Hg 632.8 548.1 469.4 359.7 257.7 193.6 161.2 120.7
Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and naphthalene at 300 Kare 50.71 mm Hg and 32.06 mm Hg respectively. Calculate the mole fraction of benzene in vapour phase if 80 g of benzene is mixed with 100 g of toluene.
The air is a mixture of a number of gases. The major components are oxygen and nitrogen with approximate proportion of 20% is to 79% by volume at 298 K. The water is in equilibrium with air at a pressure of 10 atm. At 298 Kif the Henry’s law constants for oxygen and nitrogen are 3.30 × 107 mm and 6.51 × 107 mm respectively, calculate the composition of these gases in water.
Determine the amount of CaCl2 (i = 2.47) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at 27°C.
Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K2SO4 in 2 liter of water at 25° C, assuming that it is completely dissociated.
Henry’s law constant for CO2 in water is 1.67 × 108 Pa at 298 K. Calculate the quantity of CO2 in 500 mL of soda water when packed under 2.5 atm CO2 pressure at 298 K.
Units And Measurements
Motion in a straight Line
Motion in a Plane
Law of Motion
Work, Energy and Power
System of Particles and Rotational Motion
Gravitation
Mechanical Properties of Solids
Mechanical Properties of Fluids
Thermal Properties of Matter
Thermodynamics
Kinetic Theory
Oscillations
Waves
Some Basic Concepts Of Chemistry
Structure Of Atom
Classification Of Elements & Periodicity
Chemical Bonding
States Of Matter
Equilibrium
Redox Reactions
Hydrogen
The S-block Elements
The P-block Elements
Organic Chemistry Some Basic Principles
Hydrocarbons
Environmental-Chemistry
Sets
Relations & Functions
Trigonometric Functions
Principle Of Mathematical Induction
Complex Numbers & Quadratic Equations
Linear Inequalities
Permutations & Combinations
Binomial Theorem
Sequences & Series
Straight Lines
Conic Sections
3D Geometry
Electric Charges & Fields
Electrostatic Potential & Capacitance
Current Electricity
Magnetism & Matter
Electromagnetic Induction
Alternating Current
Electromagnetic Waves
Ray Optics & Optical Instruments
Wave Optics
Dual Nature Of Radiation & Matter
Atoms
Nuclei
Semiconductor Electronics Materials
Communication Systems
Solid State
Solutions
Electrochemistry
Chemical Kinetics
Surface Chemistry
General Principle and Process
The pblock elements
The d & f block elements
Coordination Compounds
Haloalkanes & haloarenes
Alcohols Phenols & Ethers
Aldehydes Ketones & Carboxylic Acids
Amines
Biomolecules
Polymers
Chemistry In Everyday Life
Inverse Trignometric Functions
Matrices
Determinants
Continuity & Differentiability
Application of Derivatives
Integrals
Applications Of Integrals
Differential Equations
Vector Algebra
Linear Programing
Probability