Maximise Z = 3x + 4y Subject to the constraints:
Minimise Z = -3x + 4y subjectto.
Maximise Z = 5x + 3y subjectto.
Minimise Z = 3x + 5y suchthat.
Maximise Z = 3x + 2y subjectto.
Minimise Z = x + 2y subjectto.
Minimise and Maximise Z = 5x + 10y subjectto.
Minimise and Maximise Z = x + 2y subjectto.
Maximise Z = - x + 2y, subject to the constraints: .
Maximise Z = x + y, subject to .
Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains 3 units /kg of vitamin A and 5 units /kg of vitamin B while food Q contains 4 units /kg of vitamin A and 2 units /kg of vitamin B. Determine the minimum cost of the mixture?
One kind of cake requires 200g flour and 25g of fat, and another kind of cake requires 100g of flour and 50g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes?
A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftsman’s time in its making while a cricket bat takes 3 hour of machine time and 1 hour of craftsman’s time. In a day, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftsman’s time. (ii) What number of rackets and bats must be made if the factory is to work at full capacity? (ii) If the profit on a racket and on a bat is Rs 20 and Rs 10 respectively, find the maximum profit of the factory when it works at full capacity.
A manufacturer produces nuts ad bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit, of Rs 17.50 per package on nuts and Rs. 7.00 per package on bolts. How many packages of each should be produced each day so as to maximize his profit, if he operates his machines for at the most 12 hours a day?
A factory manufactures two types of screws, A and B. Each type of screw requires the use of two machines, an automatic and a hand operated. It takes 4 minutes on the automatic and 6 minutes on hand operated machines to manufacture a package of screws A, while it takes 6 minutes on automatic and 3 minutes on the hand operated machines to manufacture a package of screws B. Each machine is available for at the most 4 hours on any day. The manufacturer can sell a package of screws A at a profit of Rs 7 and screws B at a profit of Rs10. Assuming that he can sell all the screws he manufactures, how many packages of each type should the factory owner produce in a day in order to maximize his profit? Determine the maximum profit.
A cottage industry manufactures pedestal lamps and wooden shades, each requiring the use of a grinding/cutting machine and a sprayer. It takes 2 hours on grinding/cutting machine and 3 hours on the sprayer to manufacture a pedestal lamp. It takes 1 hour on the grinding/cutting machine and 2 hours on the sprayer to manufacture a shade. On any day, the sprayer is available for at the most 20 hours and the grinding/cutting machine for at the most 12 hours. The profit from the sale of a lamp is Rs 5 and that from a shade is Rs 3. Assuming that the manufacturer can sell all the lamps and shades that he produces, how should he schedule his daily production in order to maximize his profit?
A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours 20 minutes available for cutting and 4 hours of assembling. The profit is Rs 5 each for type A and Rs 6 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize the profit?
A merchant plans to sell two types of personal computers - a desktop model and a portable model that will cost Rs 25000 and Rs 40000 respectively. He estimates that the total monthly demand of computers will not exceed 250 units. Determine the number of units of each type of computers which the merchant should stock to get maximum profit if he does not want to invest more than Rs 70 lakhs and if his profit on the desktop model is Rs 4500 and on portable model is Rs 5000.
A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two foods F1and F2 are available. Food F1 costs Rs 4 per unit food and F2 costs Rs 6 per unit. One unit of food F1 contains 3 units of vitamin A and 4 units of minerals. One unit of food F2 contains 6 units of vitamin A and 3 units of minerals. Formulate this as a linear programming problem. Find the minimum cost for diet that consists of mixture of these two foods and also meets the minimal nutritional requirements?
There are two types of fertilizers F1 and F2. F1 consists of 10% nitrogen and 6% phosphoric acid and F2 consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds that she needs at least 14 kg of nitrogen and 14 kg of phosphoric acid for her crop. If F1 cost Rs 6/kg and F2 costs Rs 5/kg, determine how much of each type of fertilizer should be used so that nutrient requirements are met at a minimum cost. What is the minimum cost?
The corner points of the feasible region determined by the following system of linear inequalities: Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both (3, 4) and (0, 5) is(A) p = q (B) p = 2q (C) p = 3q (D) q = 3p
Refer to Example 9. How many packets of each food should be used to maximize the amount of vitamin A in the diet? What is the maximum amount of vitamin A in the diet?
A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?
Adieticianwishestomixtogethertwokindsoffood XandYinsucha waythatthe mixturecontainsatleast10unitsofvitaminA,12unitsofvitaminBand8unitsof vitamin C. The vitamin content of one kg food is givenbelow: Food Vitamin A Vitamin B Vitamin C X 1 2 3 Y 2 2 1 One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least cost of the mixture which will produce the required diet?
A manufacturer makes two types of toys A and B. Three machines are needed for this purposeandthetime(inminutes)requiredforeachtoyonthemachinesisgivenbelow: Type of toys Machines I II III A 12 18 6 B 6 0 9 Eachmachineisavailableforamaximumof6hoursperday.Iftheprofitoneachtoyof typeAisRs7.50andthatoneachtoyoftypeBisRs5,showthat15toysoftypeAand 30 of type B should be manufactured in a day to get maximumprofit.
An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit for the airline. What is the maximum profit?
TwogodownsAandBhavegraincapacityof100quintalsand50quintalsrespectively. They supply to 3 ration shops, D, E and F whose requirements are 60, 50 and 40 quintals respectively. The cost of transportation per quintal from the godowns to the shops are given in the followingtable: Transportation cost per quintal (in Rs) From/To A B D E F 6 3 2.50 4 2 3 Howshouldthesuppliesbetransportedinorderthatthetransportationcostis minimum? What is the minimumcost?
An oil company has two depots A and B with capacities of 7000 L and 4000 L respectively. The company is to supply oil to three petrol pumps, D, E and F whose requirements are 4500L, 3000L and 3500L respectively. The distance (in km) between the depots and the petrol pumps is given in the following table: Distance in (km) From/To A B DE F 7 6 3 3 4 2 Assuming that the transportation cost of 10 litres of oil is Re 1 per km, how should the delivery be scheduled in order that the transportation cost is minimum? What is the minimum cost?
A fruit grower can use two types of fertilizer in his garden, brand P and brand Q. The amounts (in kg) of nitrogen, phosphoric acid, potash, and chlorine in a bag of each brand are given in the table. Tests indicate that the garden needs at least 240 kg of phosphoric acid at least 270 kg of potash and at most 310 kg of chlorine. If the grower wants to minimize the amount of nitrogen added to the garden, how many bags of each brand should be used? What is the minimum amount of nitrogen added in the garden? kg per bag Brand P Brand Q Nitrogen 3 3.5 Phosphoric acid 1 2 Potash 3 1.5 Chlorine 1.5 2
Refer to question 8. If the grower wants to maximize the amount of nitrogen added to the garden, how many bags of each brand should be added? What is the maximum amount of nitrogen added?
A toy company manufactures two types of dolls, A and B. Market tests and available resources have indicated that the combined production level should not exceed 1200 dolls per week and the demand for dolls of type B is at most half of that for dolls of type A. Further, the production level of dolls of type A can exceed three times the production of dolls of other type by at most 600 units. If the company makes profit of Rs 12 and Rs 16 per doll respectively on dolls A and B, how many of each should be produced weekly in order to maximize the profit?
Units And Measurements
Motion in a straight Line
Motion in a Plane
Law of Motion
Work, Energy and Power
System of Particles and Rotational Motion
Gravitation
Mechanical Properties of Solids
Mechanical Properties of Fluids
Thermal Properties of Matter
Thermodynamics
Kinetic Theory
Oscillations
Waves
Some Basic Concepts Of Chemistry
Structure Of Atom
Classification Of Elements & Periodicity
Chemical Bonding
States Of Matter
Equilibrium
Redox Reactions
Hydrogen
The S-block Elements
The P-block Elements
Organic Chemistry Some Basic Principles
Hydrocarbons
Environmental-Chemistry
Sets
Relations & Functions
Trigonometric Functions
Principle Of Mathematical Induction
Complex Numbers & Quadratic Equations
Linear Inequalities
Permutations & Combinations
Binomial Theorem
Sequences & Series
Straight Lines
Conic Sections
3D Geometry
Electric Charges & Fields
Electrostatic Potential & Capacitance
Current Electricity
Magnetism & Matter
Electromagnetic Induction
Alternating Current
Electromagnetic Waves
Ray Optics & Optical Instruments
Wave Optics
Dual Nature Of Radiation & Matter
Atoms
Nuclei
Semiconductor Electronics Materials
Communication Systems
Solid State
Solutions
Electrochemistry
Chemical Kinetics
Surface Chemistry
General Principle and Process
The pblock elements
The d & f block elements
Coordination Compounds
Haloalkanes & haloarenes
Alcohols Phenols & Ethers
Aldehydes Ketones & Carboxylic Acids
Amines
Biomolecules
Polymers
Chemistry In Everyday Life
Inverse Trignometric Functions
Matrices
Determinants
Continuity & Differentiability
Application of Derivatives
Integrals
Applications Of Integrals
Differential Equations
Vector Algebra
Linear Programing
Probability